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Abstract.  

Satellite remote sensing of frozen hydrometeors in deep convective systems is essential for understanding precipitation 

systems and the formation of upper-level clouds. To reduce uncertainties in ice cloud microphysical properties inside 10 

convective clouds, a combined use of millimeter-wave sensors sensitive to frozen particles in deep convective clouds is a 

promising strategy. This study uses the CloudSat Cloud Profiling Radar (CPR) and the Global Precipitation Measurement 

(GPM) Microwave Imager (GMI) to retrieve the vertical profiles of ice water content (IWC), number concentration (Nt) and 

mass-weighted diameter (Dm). A new retrieval method is developed by a combination of Deep Neural Network (DNN) and 

Optimal Estimation Method (OEM). In the first step of the algorithm, an initial guess is estimated by DNN based on an a 15 

priori database, followed by the next step where OEM seeks a more optimal frozen hydrometer profile. 

The retrieval performance is evaluated against selected match-up observations of CloudSat and GPM. The combined use of 

CPR and GMI observations reduce retrieval errors compared to the CPR-only observations. The retrieved frozen hydrometer 

profiles excellently reproduce CPR reflectivity and GMI brightness temperatures (Tb) when computed by forward 

simulations. The dual-frequency precipitation radar (DPR) reflectivity is also reasonably reproduced, indicating some ability 20 

to retrieve large snow and graupel particles detectable by the low-frequency radars. Among different ice habit models tested, 

the optimal models for this synergistic algorithm are dendrite snowflake and soft sphere for the ice density model used in this 

algorithm. The combined algorithm developed by this work implies the potential of passive and active millimeter-wave 

instruments for retrieving multiple aspects of the cloud ice properties when combined in tandem. Future work will 

incorporate new satellite missions, including EarthCARE Doppler millimeter-wave radar and submillimeter-wave 25 

radiometers such as Ice Cloud Imager. 
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1 Introduction 

Frozen hydrometeors such as cloud ice, snow, and graupel play a crucial role in tropical convective cloud systems, 30 

particularly those accompanied by intense rainfall and widespread anvils. Deep convective clouds as often observed in the 

tropics contain a significant amount of solid precipitation particles aloft, which serve as the primary source of heavy 

precipitation at the surface. Moreover, cirrus anvils detrained from deep convection contributes to the formation of nearly 

one half of tropical upper-level clouds (Luo and Rossow, 2004). These ice clouds in the tropical upper troposphere impose a 

significant radiative forcing in both shortwave and longwave spectra, and the imbalance between the shortwave and 35 

longwave effects depends on cloud microphysical properties (Hartmann and Berry, 2017; Ohno and Satoh, 2018). The 

radiative forcing of clouds associated with global warming is identified as one of the largest sources of uncertainty in climate 

change predictions (IPCC 2021). To understand the formation processes of precipitation systems in deep convective clouds 

and tropical upper-level clouds, it is crucial to observationally clarify the properties of frozen hydrometeors formed within 

convective clouds. 40 

Understanding the properties of frozen hydrometeors is a significant challenge for both numerical modeling and satellite 

observations. Among the General Circulation Models (GCMs) used in IPCC assessments, significant discrepancies in the 

global mean ice water path (IWP) have been reported, resulting mainly from limitations in cloud parameterization (Waliser 

et al., 2009). These discrepancies give rise to errors in climate predictions and uncertainties in the cloud feedbacks associated 

with global warming. High-quality global-scale satellite observation data are instrumental for validating the climate models. 45 

However, the IWP estimates from satellite observations, while relatively consistent in spatial distribution, have significant 

discrepancies in absolute values among one another (Duncan and Eriksson, 2018; Eliasson et al., 2011). The primary sources 

of these discrepancies are believed to be the uncertainties in the cloud microphysical properties and differences in the 

sensor’s sensitivity to ice particles (Duncan and Eriksson, 2018). 

To reduce the uncertainty in cloud microphysical properties, a combined use of multiple sensors offers a promising strategy. 50 

The signals observed by satellite sensors depend not only on ice water content (IWC) but also on the cloud microphysical 

properties such as particle size distribution (PSD) and particle shape. Constraining IWC and the cloud microphysical 

properties at the same time benefits from a synergy of multiple sensors with different measuring principles, which could 

complement the technical limitations of individual sensors alone. Cloud ice observations have historically begun with 

passive sensors in the visible, infrared (Heidinger and Pavolonis, 2009), and microwave spectrum (Deeter and Franklin 55 

Evans, 2000; Evans et al., 2012). In recent years, methods for a combined use of radar and lidar have been developed 

(Delanoë, J., and R. J. Hogan, 2008, 2010; Deng et al., 2015; Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010; 

Okamoto, 2003; Okamoto et al., 2010). Radar and lidar observations of cloud ice, independently or in tandem, has led to 

significant advancements in reducing the uncertainty of cloud microphysical properties. However, the synergy of radar and 

lidar observations is not optimal for the retrieval of frozen hydrometer within thick clouds such as convective clouds, 60 
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because the lidar signals experience a sever attenuation. The uncertainty in cloud microphysical properties within the 

convective clouds remains a significant challenge. 

This study explores a combined use of millimeter-wave radar and radiometer measurements, which are both able to penetrate 

through a deep cloud layer better than lidar observations. The Cloud Profiling Radar (CPR) aboard the CloudSat satellite and 

the Global Precipitation Measurement (GPM) Microwave Imager (GMI) aboard the GPM core observatory are used in this 65 

study. GMI carries a series of channels from lower to higher frequencies (G-band) unlike the single-frequency CPR. Since 

the scattering properties depend on frequency and particle size, a combined use of CPR and GMI observations at different 

wavelengths has the potential to reduce uncertainties in the particle size distribution. In addition, CPR captures the 

backscattered echoes from hydrometers, while GMI observes extinction (absorption and scattering) signals. As shown 

previously (Liu, 2008), the backscattering and extinction properties change differently for various frozen particle shapes. 70 

Combining the different measurement principles of CPR and GMI may help reduce the uncertainties of particle shape. The 

objective of this study is to develop an algorithm to retrieve the frozen hydrometers combining CPR and GMI measurements, 

exploiting the frequency and instrument dependencies of the microphysical properties of ice particles.   

Previous studies that have explored a combined use of a cloud radar and a microwave radiometer largely relied on simulated 

observations (Pfreundschuh et al., 2020) or aircraft observations (Evans et al., 2005, 2012; Pfreundschuh et al., 2022), 75 

whereas few studies analyze actual observations from multiple satellite-borne sensors used in tandem. In this study, a 

method is developed to retrieve the vertical profiles of IWC, number of concentration (Nt), mass-weighted diameter (Dm) and 

the associated uncertainties. Machine learning and optimal estimation approaches are combined into the inversion model. 

Section 2 details the satellite data and numerical models used in this study. Section 3 describes the methodology and flow of 

the retrieval algorithm. Section 4 evaluates the algorithm performance and the synergy of CPR and GMI observations. 80 

Section 5 validates the retrievals using CloudSat and GPM observations and investigates preferred assumptions of particle 

shape. Section 6 compares the estimates from current algorithm with existing cloud ice products. Finally, Section 7 

summarizes the findings and outlines future prospects. 

2 Data and model 

2.1 Simultaneous observations from the GPM and CloudSat satellites 85 

The CPR aboard the CloudSat satellite is a nadir-looking W-band radar. Table 1 outlines the specifications of the CPR. The 

detailed vertical structure of hydrometeors can be derived from 94GHz radar reflectivity from the CPR. The GMI aboard the 

GPM core satellite is a conically scanning microwave radiometer. As shown in Table 1, the GMI channels span a wide 

frequency range from 10 to 183GHz (Newell et al., 2015). In this study, brightness temperature (Tb) at frequencies of 89 

GHz and higher are used since these frequencies are sensitive to the microwave scattering by frozen hydrometeors. The GMI 90 

has the highest spatial resolution among space-borne passive microwave sensors equipped with frequencies above 166 GHz. 
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The inclined orbit of the GPM satellite has occasional orbital overlaps with polar-orbiting satellites including CloudSat, 

allowing for simultaneous observations at various locations from time to time. 

 

Freq. [GHz] Noise (dBZ)  Vertical 

resolution 

(km) 

Spatial 

resolution 

(km) 

94 -29 0.5 1.4 

 95 

Freq. [GHz] Noise (K)  Polarization FOV (km) 

10.65 0.77 V H 20×32 

18.7 0.63 V H 12×18 

23.8 0.51 V  10×16 

36.64 0.41 V H 10×15 

89 0.32 V H 6×7 

166 0.70 V H 6×6 

183.31±7 0.56 V  6×5 

183.31±3 0.47 V  6×5 

Table 1: Specifications of the GPM/GMI and Cloud Sat/CPR. 

 

For the evaluation of the combined GMI and CPR algorithm being developed, we utilize a match-up observation dataset 

from GPM/GMI, Dual-frequency Precipitation Radar (DPR) and CloudSat/CPR (Turk et al., 2021). This dataset collects data 

when GPM and CloudSat fly over the same location within a time difference of 15 minutes. This dataset consists of 100 

observations from GMI, DPR and CPR along CloudSat’s ground tracks as well as the collocated ECMWF atmospheric state 

variable data (ECMWF-AUX). For comparison, also used are an existing cloud and precipitation product (2C-ICE and 2C-

RAIN) derived from CPR and Cloud-Aerosol LIdar with Orthogonal Polarization Lidar (CALIOP) aboard the Cloud-

Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite (Deng et al., 2015). Detailed information 

regarding the products and parameters used in this study is provided in Table 2. The comparison and evaluation of the 105 

current algorithm with these datasets will be discussed in Sections 4 and 5. 

 

 

Product name Satellite sensor Parameter used in this study 

ECMWF-AUX  Pressure, temperature, specific humidity, skin temperature, surface wind 10m 
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1C-R.GPM.GMI  GPM/GMI Brightness temperature 

2A.GPM.DPR GPM/DPR Ku and Ka-band radar reflectivity 

2B-GEOPROF CloudSat/CPR Height, latitude, longitude, W-band radar reflectivity, CPR cloud mask 

2C-ICE CloudSat/CPR and 

CALIPSO/CALIOP 

Ice water content, effective radius 

2C-RAIN CloudSat/CPR and 

CALIPSO/CALIOP 

Liquid water content 

Table 2: Details of the GPM, CloudSat , CALIPSO and ECMWF-AUX products. 

 110 

2.2 Cloud resolving model 

In this study, an a priori database constituted of cloud and atmospheric variables is constructed with global cloud-resolving 

simulations from the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). The development of NICAM, initially 

begun by (Tomita and Satoh, 2004), is currently maintained by the Atmosphere and Ocean Research Institute (AORI) at the 

University of Tokyo, the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), and the RIKEN Advanced 115 

Institute for Computational Science (RIKEN/AICS). NICAM has spawned numerous studies on tropical atmospheric 

dynamics (Miura et al., 2007; Miyakawa et al., 2014; Nakano et al., 2015). NICAM outputs of an Madden-Julian Oscillation 

(MJO) event offered a testbed for the assessment of cloud microphysical schemes in comparison with satellite observations 

(Masunaga et al., 2008). The technical details about the NICAM can be found in (Satoh et al., 2008, 2014). The version of 

NICAM simulations adopted in this study was run using a single-moment microphysical scheme with a horizontal resolution 120 

of 14 km and a vertical resolution of 38 layers.   

 

2.3 Forward model 

The Joint Simulator for Satellite Sensors (J-sim) (Hashino et al., 2013, 2016) is used for forward simulations of satellite 

observations in this study. J-sim, being developed by Japan Aerospace Exploration Agency (JAXA), contains radar and 125 

microwave radiometer modules based on the Satellite Data Simulator Unit (SDSU) (Masunaga et al., 2010), which are 

employed for simulating observations compatible with GPM/GMI, DPR and Cloud Sat/CPR. J-sim allows to test various 

microphysical assumptions such as particle size distribution (PSD) and particle shape in the forward radiative-transfer 

calculations (for details, see Section 3.1). Technical details of J-sim are described in Hashino et al. (2013, 2016). 
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3 Retrieval algorithm 130 

In this section, the current algorithm methodology is described to retrieve the vertical profiles of IWC, Nt, Dm and the 

associated uncertainties. The algorithm flow shown in Fig. 1 consists of two components. The first component, marked by 

blue dashed box, produces an initial estimation of the vertical profiles of IWC, Nt (and Dm) using Deep Neural Network 

(DNN). In the second component indicated by red dashed box, Optimal Estimation Method (OEM) is adopted to optimize 

the frozen hydrometer profile (IWC, Nt and Dm) using the DNN estimates as the first guess and then estimates the retrieval 135 

error. The DNN technique has the disadvantages that estimates are highly dependent on the training dataset and that 

uncertainty cannot be easily evaluated, but it has the advantage of obtaining reasonable estimates with a very low 

computational cost. The DNN technique is suitable for a quick estimation of an initial guess. On the other hand, OEM is 

computationally more expensive than DNN but is a well-established methodology providing statistically robust retrievals 

that best match observations (Rodgers, 2000) beyond the constraint of the a priori database used for the DNN component. 140 

OEM is suitable for the final optimization of the retrieved values and the estimation of uncertainty. The cloud microphysics 

assumptions commonly used by DNN and OEM are described in Section 3.1, the details of the DNN training in Section 3.2, 

the details of the OEM framework in Section 3.3, and an example of retrieval using this combined algorithm is shown in 

Section 3.4. 

 145 

Figure 2: Flow of the retrieval algorithm.  
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3.1 Cloud microphysical assumption 

3.1.1 Particle size distributions 

The cloud PSD is determined in a complex manner depending on a variety of factors such as in-cloud temperature, but needs 150 

vast simplifications in practice when formulated in retrieval algorithms. In previous studies, lognormal or gamma 

distribution functions (Austin et al., 2009; Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010), which consist of 

temperature-dependent PSD parameters, have been mainly used to capture the basic properties of PSD. In this study, the 

following temperature-dependent gamma PSD function is assumed as Heymsfield and Schmitt (2013), 

𝑁(𝐷) = 𝑁0𝐷
𝜇exp⁡(−𝜆𝐷) ,          (1) 155 

𝜇 = −14.09 − 0.248⁡𝑇⁡(𝑇 < −61)
𝜇 = −0.59 − 0.030⁡𝑇⁡⁡⁡(𝑇 ≥ −61)

 ,         (2) 

Here 𝑁0 is the intercept, 𝜇 is the dispersion, 𝜆 is the slope parameter, and 𝐷 is the maximum dimension of a particle. In this 

algorithm, 𝜇 is prescribed as a function of temperature (𝑇) as defined by Eq. (2) of  Heymsfield and Schmitt (2013), while 

𝑁0 and 𝜆 are free parameters to be optimized in the algorithm. The PSD for liquid hydrometeors (cloud water and rain) is as 

given by the NICAM cloud microphysical scheme (Tomita, 2008). 160 

3.1.2 Particle shapes and densities 

Radar and radiometric observations also depend on the shape and density of frozen hydrometeors. Frozen hydrometeors are 

more diverse in shape and density than liquid hydrometeors. For example, light snowflakes have a density of less than 100 

kg/m3 and have significantly different single scattering properties (SSP) from spherical solid ice (with the density of 916 

kg/m3). The Discrete Dipole Approximation method (DDA) has been widely used to calculate SSP for non-spherical 165 

particles (Draine and Flatau, 1994; Liu, 2008; Okamoto, 2002). The J-sim  has an option to incorporate the SSPs of 11 

different non-spherical shapes into radiative transfer calculations using pre-computed DDA databases (Liu, 2008). In 

addition to these non-spherical particle models, this algorithm assumes “soft sphere” with the mass - diameter (m-D) 

relationship reported in Heymsfield and Schmitt (2013). Figure 2 and Table 3 show the m-D relationship and the parameters 

of each particle model used in this study. Section 4 provides the retrieval results assuming “soft sphere” particle model, and 170 

Section 5 discusses the optimal particle shape assumptions including non-spherical models.  

 

Particle shape Dmax (𝜇m) Range of equal-mass 

sphere radius (𝜇m) 

am (cgs units) bm (cgs units) 

Soft Sphere  0-inf 0-inf 0.0528 2.1 
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Long column 121-4835 25-1000 0.034 3.0 

Short column 83-3304 25-1000 0.1122 3.0 

Block column 66-2632 25-1000 0. 2103 3.0 

Thick plate 81-3246 25-1000 0.1064 3.0 

Thin plate 127-5059 25-1000 0.0296 3.0 

3-bullet rosette 50-10000 19-1086 0.005 2.16 

4-bullet rosette 50-10000 19-984 0.0039 2.23 

5-bullet rosette 50-10000 21-1058 0.0049 2.23 

6-bullet rosette 50-10000 21-1123 0.0059 2.24 

Sector snowflakes 50-10000 25-672 0.0011 1.54 

Dendrite snowflakes 75-12454 33-838 0.0015 2.0 

Table 3: Details of the parameter for the 12 different ice-particle models. 

 

 175 
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Figure 2: Mass - diameter relationship for each particle model used in this study. 

 

3.1.3 Retrieval parameters 

The retrieval parameters of frozen hydrometers are IWC, 𝑁𝑡 and 𝐷𝑚, as expressed by the following equations. 180 

𝐼𝑊𝐶 = ∫ 𝑚(𝐷)𝑁(𝐷)𝑑𝐷
∞

0
=

𝑎𝑚𝑁0

𝜆𝜇+𝑏𝑚+1
𝛤(𝜇 + 𝑏𝑚 + 1) ,       (3) 

𝑁𝑡 = ∫ 𝑁(𝐷)𝑑𝐷
∞

0
=

𝑁0

𝜆𝜇+1
𝛤(𝜇 + 1) ,         (4) 

𝐷𝑚 =
∫ 𝐷4𝑁(𝐷)𝑑𝐷
∞
0

∫ 𝐷3𝑁(𝐷)𝑑𝐷
∞
0

=
𝜇+4

𝜆
,

𝑅𝑒 =
3

4𝜌𝑖𝑐𝑒

∫ 𝑎𝑚𝐷
𝑏𝑚𝑁(𝐷)𝑑𝐷

∞
0

∫ 𝑎𝑎𝐷
𝑏𝑎𝑁(𝐷)𝑑𝐷

∞
0

=
3𝑎𝑚𝜆

𝑏𝑎−𝑏𝑚

4𝜌𝑖𝑐𝑒𝑎𝑎

𝛤(𝜇+𝑏𝑚+1)

𝛤(𝜇+𝑏𝑎+1)
,

        (5) 

The definition of particle size varies among previous studies. Although 𝐷𝑚 is used in the present algorithm, effective radius 

(𝑅𝑒) is also calculated by Eq. (5) for ease of comparison with existing data products. The parameters of area-diameter 185 

relationship 𝑎𝑎 and 𝑏𝑏 in Eq. (5) are set to the values reported in Heymsfield and Schmitt (2013). 
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3.2 Deep neural network for initial value estimation 

The flowchart of DNN training is shown in Fig. 3. As mentioned earlier, the frozen hydrometeor datasets of the cloud 

resolving model (NICAM) are used as the reference data, and the observations simulated by the forward model (J-sim) from 

the NICAM data are input to the DNN training. The training dataset and procedure are described below in some detail. 190 

 

 

Figure 3: Flow of DNN training using NICAM dataset. 

 

3.2.1 Training dataset 195 

 Figures 4 (a), (c), and (e) show the Contoured Frequency by Altitude Diagram (CFAD) of absolute humidity (AH), and 

temperature (T) from NICAM reference dataset in the tropics. For comparison, Figs. 4 (b), (d), and (f) plot the CFAD of AH 

and T from the ECMWF-AUX product, respectively, for three winter months (DJF) of 2015 in the tropics. The tropical 

oceans have little seasonal variation, so there are no significant changes over different seasons. Although not shown in Fig. 4, 

IWC, pressure (P), liquid water content (LWC), sea surface temperature (SST) and sea surface wind speed (SSW) obtained 200 

from NICAM are also recorded for forward calculations. Figures 4 (e) and (f) show the CFAD of radar reflectivity 

simulated from NICAM and actual observed CPR reflectivity. The humidity, temperature and radar reflectivity simulated 

from NICAM are similar to that of real atmospheric profiles, indicating that NICAM serves well as a reference (a priori) 

database for initial value estimation.  

 205 
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Figure 4: CFAD of NICAM reference dataset and actual atmospheric variables. CFAD of temperature profiles for (a) NICAM and 

(b) ECMWF-AUX. CFAD of absolute humidity profiles for (c) NICAM and (d) ECMWF-AUX. CFAD of radar reflectivity profiles 

for (e) simulation and (f) CPR observation. 

 210 

3.2.2 DNN training  

The DNN transforms the input data using the weight matrix 𝑾 and the activation function 𝜑(𝑥). By using a nonlinear 

function  𝜑(𝑥), DNN allows for a nonlinear transformation. In this study, the widely used ReLU function is adopted as 

𝜑(𝑥). The DNN inversion model 𝒚𝑫𝑵𝑵 can be written as follows for input data 𝒙𝑖. 

𝒚𝑫𝑵𝑵(𝒙𝒊) = 𝑾𝟑𝝋(𝑾𝟐⁡𝝋(𝑾𝟏𝒙𝒊+𝒄𝟏)+𝒄𝟐)+𝒄𝟑 ,        (6) 215 

Here, 𝒄𝒏 are constant vectors. The DNN model consists of 3 layers with 200 nodes in this study. During DNN training, 𝑾 is 

optimized using the back propagating algorithm to minimize the following loss function 𝐽𝐷𝑁𝑁. 

𝐽𝐷𝑁𝑁 = ∑ (𝒚𝐷𝑁𝑁 − 𝒚𝒊)
2

𝑖 = ∑ (𝑦𝐷𝑁𝑁(𝒙𝒊) − 𝐹
−1(𝒙𝒊))

2
𝑖  ,       (7) 

Where the reference data 𝑦𝑖  are NICAM-based frozen hydrometer profiles, and the input data 𝑥𝑖  are the simulated 

observation from reference 𝑦𝑖  for GMI and CPR. Therefore, 𝑦𝑖  can be represented as the true inversion solution of forward 220 

model 𝑭−𝟏(𝒙𝒊). The DNN inversion model 𝒚𝑫𝑵𝑵(𝒙𝒊) would ideally approach the true inversion model 𝑭−𝟏(𝒙𝒊) through the 

minimization of 𝑱𝑫𝑵𝑵. In practice, care must be taken to avoid technical issues such as overfitting. 

To stabilize the DNN training, the following preprocessing of input data is performed. GMI Tb depends not only on cloud 

physical parameters but also on water vapor, temperature profiles, and surface emissions. To factor out these effects, ΔTb 
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(above 89GHz), which is the all-sky Tb minus the clear-sky Tb, is used as the input for DNN. Clear-sky Tb is obtained by 225 

repeating the forward simulations with all condensates taken out. The clear-sky Tbs for the real observations are calculated 

similarly but with the atmospheric states from ECMWF-AUX (see Section 4 for details). The CPR reflectivity profiles have 

a much larger number of dimensions than the GMI Tb data, which are used together as DNN inputs. An Empirical 

Orthogonal Function (EOF) analysis is performed to retain only the first 10 principal components of radar reflectivity 

profiles (EOFZej, j=1~10) so the dimension size is made comparable between CPR and GMI observations. The cumulative 230 

variance by the top 10 principal components accounts for approximately 99.9% of the total variance. The principal 

component 𝑬𝑶𝑭𝒁𝒆𝒋 is obtained from the Eq. (8) and Eq. (9). 

1

𝑛
𝒁𝒁𝑻𝒆𝒋 = 𝜆𝑗𝒆𝒋⁡⁡⁡⁡⁡⁡(𝑗 = 1~10)

𝒁 = (𝒁𝒆𝟏
𝒕𝒓𝒂𝒊𝒏 − 𝑍𝑒1

𝑡𝑟𝑎𝑖𝑛 ,̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⋯ , 𝒁𝒆𝒏
𝒕𝒓𝒂𝒊𝒏 − 𝑍𝑒𝑛

𝑡𝑟𝑎𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅)
 ,        (8) 

𝑬𝑶𝑭𝒁𝒆𝒋 = 𝒆𝒋
𝑻𝒁𝒆𝒐𝒃𝒔 ,           (9) 

Here, 𝒆𝒋 is the eigenvector of Eq. (8), 𝒁𝒆𝒏
𝒕𝒓𝒂𝒊𝒏⁡⁡⁡and⁡⁡𝑍𝑒𝑛

𝑡𝑟𝑎𝑖𝑛̅̅ ̅̅ ̅̅ ̅̅ ̅ represent the radar reflectivity profile and its vertical average, 235 

respectively, for the n-th sample in the training data, 𝒁𝒆𝒐𝒃𝒔 is the observed radar reflectivity profile, and 𝑬𝑶𝑭𝒁𝒆𝒋 is the j-th 

principal component. 

It is noted that the NICAM simulations contain errors due to the limited resolution of the model or the representativeness of 

real cloud profiles by the model. These errors would only remotely affect the final retrieval in that the DNN-derived solution 

is adjusted by the OEM as outlined next. As such, the role of the DNN in this algorithm is an efficient production of the 240 

initial values for the OEM component. 

3.3 Optimal estimation for the finale retrieval and uncertainty evaluation 

The bottom half of Fig. 1 shows the main flow of the OEM for finale retrieval and uncertainty evaluation. The OEM is a 

Bayesian method that finds a solution which maximize the given posteriori possibility density function 𝑝𝑝𝑜𝑠𝑡(𝑿|𝒀) (Rodgers, 

2000). Here, state vector 𝑿 is defined by combining vertical profiles of IWC and 𝑁𝑡, and measurement vector 𝒀 is the CPR 245 

𝒁𝒆 and GMI Tb above 89 GHz. 

𝑿 =

(

 
 
 

𝑙𝑜𝑔(𝐼𝑊𝐶)1
⋮

𝑙𝑜𝑔(𝐼𝑊𝐶)𝑛
𝑙𝑜𝑔(𝑁𝑡)1

⋮
𝑙𝑜𝑔(𝑁𝑡)𝑛 )

 
 
 
, 𝒀 =

(

 
 
 

𝑍𝑒1
⋮
𝑍𝑒𝑛
𝑇𝑏89
⋮

𝑇𝑏183±3)

 
 
 

 ,         (10) 

Here, n is the number of cloud ice layers. IWC and 𝑁𝑡 profiles are set to be in a logarithmic form to avoid negative estimates.  

Assuming a Gaussian possibility density function, the cost function 𝐽𝑂𝐸𝑀  to be minimized by OEM is written as the 

following equation. 250 
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𝐽𝑂𝐸𝑀 = (𝒀 − 𝐹(𝑿))
𝑇
𝑆𝑒
−1(𝒀 − 𝐹(𝑿)) + (𝑿 − 𝑿𝑎)

𝑇𝑆𝑎
−1(𝑿 − 𝑿𝑎) ,      (11) 

where 𝐹(𝑿) is the satellite observation simulated by the forward model (J-sim) from the state vector 𝑿, 𝑿𝑎 is a priori state, 

given by the initial value estimated by DNN, 𝑺𝑎  is the covariance error matrix for the a priori state. The elements of 𝑺𝒂 

including off-diagonal terms are defined as (𝑆𝑎)𝑘𝑙 = 𝜎𝑎
2 exp (−

𝑑𝑘𝑙

𝐿
)  to take into account the level-to-level correlations 

(Delanoë, J., and R. J. Hogan, 2008; Rodgers, 2000). Here, 𝑑𝑖𝑗  is the distance between k, l layer, and 𝜎𝑎 = 0.5, 𝐿 = 3.5 km. 255 

𝑺𝒆 is the covariance error matrix for measurements, which take into account not only sensor-derived measurement errors but 

also forward simulation-derived errors such as the uncertainty due to particle shape assumptions. The measurement error of 

CPR reflectivity is set to be 2.5 dBZ according to previous studies (Deng, M., G. G. Mace, Z. Wang, and H. Okamoto, 2010). 

A previous study (Kulie et al., 2010) reported that the uncertainty in the high-frequency Tb due to particle shape assumptions 

is√5.15⁡K at 166 GHz. In addition, since the GMI footprint is larger than the CPR footprint, errors caused by the non-260 

uniform beam filling (NUBF) effect should be considered. The measurement error of GMI Tb is set sufficiently large value 

of 4 K, and the off-diagonal terms of 𝑺𝒆 are assumed to be zero.  

The Gauss-Newton iteration method is used as the algorithm for finding the minimum value of the cost function in Eq. (11), 

and the state vector of the i-th iteration 𝑿𝒊 is repeatedly updated until convergence according to the following equation. 

𝑿𝒊+𝟏 = 𝑿𝒊 + (𝑺𝒂
−𝟏 +𝑯𝒊

𝑻𝑺𝒆
−𝟏𝑯𝒊)

−𝟏
[𝑯𝒊

𝑻𝑺𝒆
−𝟏(𝒀 − 𝑭(𝑿𝒊)) − 𝑺𝒂

−𝟏(𝑿𝒊 − 𝑿𝒂)] ,     (12) 265 

𝑯 =

(

 
 
 
 
 
 

𝝏𝒁𝒆𝟏

𝝏𝑰𝑾𝑪𝟎
…

𝝏𝒁𝒆𝟏

𝝏𝑰𝑾𝑪𝒏

⋮ ⋱ ⋮
𝝏𝒁𝒆𝒏

𝝏𝑰𝑾𝑪𝟎
…

𝝏𝒁𝒆𝒏

𝝏𝑰𝑾𝑪𝒏

𝝏𝒁𝒆𝟏

𝝏𝑵𝒕𝟎
…

𝝏𝒁𝒆𝟏

𝝏𝑵𝒕𝒏

⋮ ⋱ ⋮
𝝏𝒁𝒆𝒏

𝝏𝑵𝒕𝟎
…

𝝏𝒁𝒆𝒏

𝝏𝑵𝒕𝒏
𝝏𝑻𝒃𝟖𝟗

𝝏𝑰𝑾𝑪𝟎
…

𝝏𝑻𝒃𝟖𝟗

𝝏𝑰𝑾𝑪𝒏

⋮ ⋱ ⋮
𝝏𝑻𝒃𝟏𝟖𝟑

𝝏𝑰𝑾𝑪𝟎
…

𝝏𝑻𝒃𝟏𝟖𝟑

𝝏𝑰𝑾𝑪𝒏

𝝏𝑻𝒃𝟖𝟗

𝝏𝑵𝒕𝟎
…

𝝏𝑻𝒃𝟖𝟗

𝝏𝑵𝒕𝒏

⋮ ⋱ ⋮
𝝏𝑻𝒃𝟏𝟖𝟑

𝝏𝑵𝒕𝟎
…

𝝏𝑻𝒃𝟏𝟖𝟑

𝝏𝑵𝒕𝒏 )

 
 
 
 
 
 

 ,        (13) 

The Jacobian matrix 𝑯 is calculated by applying forward simulations to IWC and 𝑁𝑡 profiles being perturbed in each layer. 

The convergence is evaluated using the 𝜒2 test (Rodgers, 2000) to obtain the final-retrieved state vector. OEM offers the 

retrieval errors defined by the trace of the following matrix 𝑺 defined below. 

𝑺 = (𝑺𝒂
−𝟏 +𝑯𝑻𝑺𝒆

−𝟏𝑯)−𝟏 .           (14) 270 

3.4 Example of the retrieval 

Figure 5 shows an example retrieval for a given CPR and GMI match-up observation. The solid black lines in Figs. 5 (a) and 

(b) are the CPR reflectivity and GMI ΔTb used as the input, and Figs. 5 (c) and (d) plot the DNN-based initial estimates of 

IWC and Nt profiles and the iteration process by OEM. Figure 5 (a) also shows the CPR reflectivity and GMI ΔTb simulated 

by the forward model using the DNN and OEM estimates as the input. The DNN yields the estimates that are roughly, if not 275 
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perfectly, consistent with the satellite observations, suggesting that the DNN performs well as an initial value estimator. The 

OEM, refining the DNN estimate, estimates the frozen hydrometer profiles in better agreement with both the CPR 

reflectivity profile and GMI Tb. A statistical evaluation of the algorithm performance will be discussed in Section 4 and 5. 

 

 280 

Figure 5: Example of the initial estimation by DNN and iteration process by OEM. (a) The CPR reflectivity observations are 

plotted as a black line and radar reflectivity simulated from the DNN initial estimates as a dark blue line. The OEM iteration 

process is shown with the number of iterations, and the radar reflectivity simulated from the OEM final estimates is plotted with a 

dark red line. (b) Same comparison as in (a) for GMI ΔTb. (c) The DNN initial estimates of IWC are plotted with a dark blue line 

and the OEM final estimates of IWC with a dark red line. (d) Same comparison as in (c) for Nt. 285 

4 Algorithm performance 

4.1 Application to match-up observations of GPM and CloudSat 

In this section, the present algorithm is applied to actual match-up observations from CloudSat and GPM satellites (Turk et 

al., 2021). Figures 6 (a) and (b) show a snapshot of simultaneous observations of CPR and GMI on March 18, 2016, 

containing a mature tropical convective system. Observed GMI Tb is plotted in solid lines and the simulated clear-sky Tb 290 

from atmospheric data ECMWF-AUX is plotted in dashed lines. The GMI Tb and the simulated clear-sky Tb are in good 

agreement in the clear-sky regions (latitudes < −11°), showing the fidelity of the temperature and humidity sounding in use. 

The ΔTb for each channel is the difference between GMI Tb and simulated clear-sky Tb. 
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 295 

Figure 6: The match-up observation data of CloudSat/CPR reflectivity and GPM/GMI brightness temperature for algorithm 

inputs. (a) The vertical distribution of CPR reflectivity and freezing level (dotted line). (b) The solid lines are GMI Tb observations, 

and the dotted lines are the clear-sky brightness temperature simulated from ECMWF-AUX. (c) Horizontal distribution of CPR 

Zeint (red line), 166GHz ΔTb (black line) and shifted 166GHz ΔTb (blue line). 

 300 

Figure 6 (c) plots GMI 166GHz ΔTb in black dotted line and vertically integrated CPR reflectivity Zeint defined as follows 

(Kulie et al., 2010) in blue line.  

𝒁𝒆𝒊𝒏𝒕 = ∫ 𝑍𝑒(ℎ)𝑑ℎ
𝐻𝐶𝑇
𝐻𝐹𝐿

 ,           (15) 

Here, 𝐻𝐹𝐿  and 𝐻𝐶𝑇  are the freezing level and cloud-top height, respectively. Care needs to be taken, however, when 

comparing 𝒁𝒆𝒊𝒏𝒕⁡with the corresponding GMI ΔTb. While the CPR is a nadir-looking radar, GMI observations have a slanted 305 

viewing angle of about 52.8 degree at Earth’s surface. As a result, the layer of cloud ice aloft producing a depression of GMI 

Tb is horizontally offset from the CPR profile matched up to the surface geolocation. To reduce the error due to this 

misalignment, ΔTb is shifted so that the correlation of horizontal pattern between ΔTb and Zeint becomes the highest (shown in 

red line). As described in Section 3.3, the errors caused by NUBF effect is already considered in the covariance matrix 𝑆𝑒. 

The CPR reflectivity and the shifted GMI ΔTb are input to the algorithm to retrieve the frozen hydrometer profile. The 310 

retrieved IWC, Nt and Dm profiles obtained from the current algorithm are shown in Fig. 7.  

  

https://doi.org/10.5194/egusphere-2025-173
Preprint. Discussion started: 24 March 2025
c© Author(s) 2025. CC BY 4.0 License.



16 

 

 

Figure 7: The retrieved IWC (upper), Nt (middle) and Re (lower) profiles from current algorithm. The dotted lines are freezing 

level. 315 

4.2 Reduction of uncertainty by synergy between GMI and CPR observations 

The OEM also provides the retrieval errors by Eq. (14). Figures 8 (a) and (b) show the retrieval error of IWC and 𝑁𝑡 in 

logarithm scale. Figures 8 (c) and (f) are example profiles of the IWC and 𝑁𝑡 retrieval errors extracted from a latitude of ~6°. 

To assess the performance of the GMI-CPR synergy, the retrieval errors are compared between the CPR-only (blue line) and 

combined-use cases (red line), respectively. The combined-use case has smaller errors than the CPR-only case in all layers, 320 

confirming a positive impact of adding GMI observations to CPR measurements.  

Figures 8 (d) and (g) plot the reduction of errors when each GMI channel is added to the CPR-only observation one by one. 

The 89GHz Tb contributes mainly to the reduction of retrieval errors in the lower layers, while 183±3GHz Tb mainly reduce 

errors in the upper layers. The error reduction in the upper layers is exclusively owing to 183±3 GHz Tb only, with the 

contribution of other frequencies being minimal. The 166 and 183±7 GHz Tb contributes across all layers from the upper to 325 

the lower layers.  Figures 8 (e) and (h) show the sensitivity of each GMI high-frequency channel to IWC and 𝑁𝑡 in each layer 

using Jacobian matrix in Eq. (13). The peak of error reduction shown in Figs. 8(d) and (g) is consistent with the peak of 

sensitivity shown in Figs. 8(e) and (h) for each channel.  
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 330 

Figure 8: Retrieval error analysis for investigation of synergy between CPR and GMI observations. Retrieval error profiles of (a) 

IWC and (b) Nt in logarithmic scale. (c) An example of IWC error profiles calculated for CPR-only (blue line) and combined-use 

case (red line). (d) Error reductions of IWC from the CPR-only case by adding each GMI high-frequency channel to the CPR 

observation. (e) Sensitivity (Jacobian) of each GMI high-frequency channel to IWC in each layer. (f) Same comparison as in (c) for 

Nt. (g) Same comparison as in (d) for Nt. (h) Same comparison as in (e) for Nt. 335 
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5 Consistency in measurement space 

5.1 Reproducibility of CPR and GMI observations 

In-situ data to validate cloud physical parameters are limited in availability. The algorithm performance is therefore tested 

using measurables (Ze and Tb) instead of retrieved variables (IWC, Nt and Dm). To this end, measurables are reproduced with 340 

forward simulations using the retrieved frozen hydrometer parameters as the input for comparison with actual observations. 

This comparison is performed using 10 match-up observations of CPR and GMI, including the case shown in Figs. 6 and 7. 

The 2C-RAIN product is used for cloud liquid water and rain water beneath the cloud-ice layer. As far as the layer of liquid 

cloud and rain is optically thick for microwave radiation as typical of heavily raining clouds, high-frequency Tb becomes far 

less sensitive to LWP than to IWP (Masunaga, 2022) and the uncertainty resulting from the liquid component is negligible. 345 

Figures 9 (a) and (b) show an example of simulated CPR radar reflectivity in the solid-phase layer and GMI Tb from the 

current algorithm estimates. Compared to the actual observation shown in Fig. 6, the spatial structure of radar reflectivity 

and the horizontal distribution of Tb are reproduced well. Figures 9 (c) and (d) are scatter plots of the simulated and actual 

observations for the 10 match-up cases. The simulated radar reflectivity and Tb at high-frequency channels are both overall 

unbiased against the actual observations. This result assures self-consistency of the current algorithm.  350 
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 355 

Figure 9: Reproducibility of the CPR reflectivity and GMI Tb for the current algorithm. (a) Example of the simulated CPR 

reflectivity and (b) simulated GMI Tb (solid lines) from the frozen hydrometeors estimated by the current algorithm. Dotted lines 

are actual GMI Tb observations for comparison. (c) Statistical comparison between actual reflectivity and simulated reflectivity for 

10 match-up cases. (d) Results of the same comparisons as in (c) for each GMI high-frequency channel. 

 360 
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5.2 Reproducibility of DPR observations 

DPR carried by the GPM core observatory yields simultaneous observations with GMI radiometry, providing additional data 

to assess the algorithm performance. GPM/DPR, a suite of Ku- and Ka-band radars, are sensitive to large frozen 

hydrometeors such as snow and graupel inside of deep convective clouds, having information independent of CPR and GMI 

observations. This study uses DPR reflectivity above freezing level to test the cloud ice estimates from the present algorithm. 365 

Similarly to Fig. 9, the Ku- and Ka-band radar reflectivity are simulated from the current algorithm estimates of frozen 

hydrometers (Figs. 10, b and d) for comparison with the actual DPR observations ((a) and (c)). The current estimates of 

cloud ice reproduce the overall distribution of observed Ku and Ka radar reflectivity. As shown in Figs. 13 (e) and (f), the 

simulated DPR reflectivity exhibits no systematic bias against the actual DPR observation for the 10 match-up cases despite 

the significant spread.   370 
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Figure 10: Reproducibility of DPR Ku and Ka-band radar reflectivity. Snapshot of the (a) Ku-DPR observation and (b) simulated 

Ku-band reflectivity from the current algorithm estimates. Snapshot of the (c) Ka-DPR observation and (d) simulated Ka-band 

reflectivity from the current algorithm estimates. (e) Statistical comparison between actual Ku-DPR observations and simulated 375 

Ku-band reflectivity using 10 match-up cases. (f) Same comparison as in (e) for Ka-band reflectivity. 
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5.3 Particle shape assumptions 

This section discusses the assumptions of the particle model optimal for this synergistic algorithm. CPR reflectivity mainly 380 

captures the backscattering properties of particles, while GMI Tbs mainly observe the scattering and absorption properties. A 

combined use of these two independent information has the potential to constrain uncertainties in the assumptions of the 

particle model. To test this, the reproducibility of CPR and GMI observations are evaluated with different non-spherical 

particle models listed in Table. 3.  Only the particle model that consistently represents all the backscattering, absorption, and 

scattering properties would allow the algorithm to find the solution (frozen hydrometer profile) that accords with both CPR 385 

and GMI observations. Figures 12 (a)-(f) compare the simulated reflectivity and Tb with the actual CPR and GMI 

observations for the six representative particle models (long column, thin plate, 4-bullet rosette, sector snowflake, dendrite 

snowflake and soft sphere). The CPR reflectivity is well reproduced regardless of the particle model assumptions by 

optimizing IWC and Nt (that is, the PSD parameters 𝜆 and 𝑁0) in our algorithm. On the other hand, the simulated Tb is 

clearly lower than the observed Tb for cold Tbs, except for the dendrite snowflake and soft sphere cases. These results 390 

indicate two points: 1) the soft sphere and dendrite snowflake are the optimal particle models among the six models tested 

here, and 2) CPR observations alone are not sufficient to simultaneously constrain the uncertainties in the PSD and particle 

models.  
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 395 

Figure 11 Comparison of the reproducibility of CPR and GMI observations for various particle models.  Scatter plots between 

actual observations and simulated observations assuming (a) long column, (b) thin plate, (c) 4-bullet rosette, (d) sector snowflake, 

(e) dendrite snowflake and (f) soft sphere. (g) Dependency of Tb bias (simulation – observation) of Zeint (IWP) for each particle 

model. 
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 400 

Figure 11 (g) plots the difference between the simulated and actual Tb as a function of IWP for each particle model 

assumption. Since the IWP estimate varies with the particle model assumptions, the horizontal axis is substituted by Zeint in 

Eq. (15). Simulated Tb is much lower than the observation for most non-spherical particle models at large Zeint , whereas for 

the dendrite snowflake and soft sphere, Tb bias is relatively small for the whole range of Zeint. A previous study (Fig. 11 in 

Kulie et al., 2010) shows a similar figure to Fig. 12 (g) and  also reported that most non-spherical particle models except the 405 

dendrite snowflake exhibit excessive scattering (negative biases to actual observation) for large IWPs. Kulie et al. (2010) 

first converted CPR reflectivity to IWC assuming the Liu's non-spherical model (Liu, 2008), and then simulated Tb from this 

IWC assuming the same particle model to compare with the actual SSMIS 157GHz Tb. Their study assumed a fixed PSD 

when simulating Tb, so the failure to reproduce GMI Tbs may be caused by an inappropriate PSD assumption rather than the 

particle model. However, even our algorithm, which optimizes PSD parameters by OEM, cannot find the solution that is 410 

simultaneously consistent with the CPR and GMI observations for non-spherical particle model except for dendrite 

snowflake.  

 

In Fig. 12 (g), the soft sphere assumption best reproduces the satellite observations, while many previous studies have shown 

that non-spherical particles are more appropriate assumption than soft sphere particle models (Ekelund and Eriksson, 2020; 415 

Galligani et al., 2015; Kulie et al., 2010). The reason for the disagreement with previous studies may be mainly due to the 

difference in the assumed m-D relationship. Since the density affects the effective dielectric constant of the particles 

according to the Maxwell-Garnett formula, the optical properties of the soft sphere depend on the assumed m-D relationship. 

Liu et al. (2004) shows that the optical properties of any non-spherical particle model can be approximated by a soft sphere 

with the density appropriately adjusted. That is, the result of Fig. 12 (b) shows that the soft sphere with the m-D relation 420 

(Heymsfield and Schmitt, 2013) used in this algorithm may be able to approximate a certain optimal particle model that is 

most consistent with real satellite observations in this case. It should be noted, however, that this result does not tell us 

whether the particles are actually spherical or not, even though the soft sphere is used as a proxy of real frozen particles. 

Since real clouds are a mixture of various particle shapes and the dominant particle shape varies with altitude, we should 

investigate using mixed non-spherical particle models, but this is a complex task and should be discussed in the future. 425 

6 Comparison with other cloud and precipitation products 

The current retrieval is compared with the CloudSat/CALIPSO standard radar/lidar product (2C-ICE). Figures 12 (a) and (b) 

show the IWC and Re estimates of 2C-ICE, and the observable areas for the CALIPSO lidar (lidar cloud mask above 25%) is 

shaded in grey. Figures 12 (c) and (d) compare the 2C-ICE estimates with the current algorithm assuming soft sphere for the 

10 match-up cases. Here, Re is calculated using Eq. (5). The IWC estimates of current algorithm agree very well with 2C-430 

ICE, but there is a positive bias in Re. In particular, the Re bias tends to increase with Re toward deep inside the cloud layer. 
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As shown in Figs. 12 (a) and (b), in the 2C-ICE product, the combined radar and lidar observations are limited to near the 

cloud tops, so the retrieval in deeper cloud layers is almost based on the CPR observations only. On the other hand, this 

study also uses GMI, allowing synergetic observations even deep inside of clouds (as shown in Figs. 8 (e) and (h)). The 

current algorithm actually captures large snow and graupel particles inside convective clouds, to which the DPR is sensitive 435 

(as shown in Fig. 10). In addition, lidar is sensitive to small particles, whereas microwave instruments are sensitive only to 

relatively large hydrometers. One possible reason for the Re bias is the difference in the sensor-specific sensitivity. Other 

factors could be differences in the cloud microphysical assumptions such as PSD and particle shape. 

 

 440 

 

Figure 12: (a) Example of IWC and Re profiles of 2C-ICE product in same case as Fig. 6 and 7. (b) Comparison of IWC and Re 

between 2C-ICE and the current estimates assuming soft sphere for 10 match-up cases. 
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7 Summary 445 

This study develops an algorithm to retrieve the vertical profiles of IWC, Nt and Dm in deep convective systems using 

simultaneous CPR and GMI observations. A new algorithm that combines the DNN and OEM for the inversion problem 

solver is proposed. The role of DNN in this algorithm is to estimate near-optimal initial values at low computational cost. 

The DNN is trained using a prior database constructed from the cloud resolving model (NICAM) (Fig. 4). The OEM uses 

the DNN estimate as an initial state to further optimize the frozen hydrometer profile to be consistent with CPR and GMI 450 

observations (Fig. 5). The retrieval error is calculated as a byproduct of the OEM at the in same time. The retrieval 

performance of the current algorithm is evaluated using match-up observations of CPR and GMI (Figs. 6 and 7). The 

combined use of CPR and GMI reduces the retrieval error compared to the case using CPR only, indicating a positive impact 

of the synergy between CPR and GMI observations (Figs. 8 (c) and (f)). These reductions of retrieval error are significant at 

multiple altitudes where the GMI high-frequency Tb is most sensitive to ice particles (Figs. 8 (d), (e), (g), and (h)).  455 

To evaluate the validity of the current algorithm estimates, the reproducibility of microwave Tb and radar reflectivity is tested 

through forward simulations. The CPR and GMI observations are overall reproduced to a reasonable extent (Fig. 9). 

Furthermore, the current estimates statistically reproduce the DPR observations (Ku- and Ka-bands), which have 

independent information and are sensitive to large snow and graupel particles inside convective clouds (Fig. 10). In addition, 

it was found that the evaluations of the simultaneous reproducibility of CPR reflectivity and GMI Tbs can constrain the 460 

choice of non-spherical particle model. For dendrite snowflake and Heymsfield’s soft sphere, Tb bias is relatively small 

regardless of IWP, whereas the simulated Tb is much lower than observed Tb at large IWP for other particle models tested 

(Fig. 11). 

Finally, the current estimates are compared with the existing radar-lidar cloud ice product (2C-ICE) (Fig. 12). The results are 

statistically in agreement for IWC, but Re tends to be overestimated by the current algorithm compared to 2C-ICE. The 465 

biases may be caused by differences in cloud microphysics assumptions (such as particle models) and the sensitivity of the 

sensors used in the algorithm. 

The framework of the algorithm developed in this study can be applied to the combined use of various cloud/precipitation 

radars and millimeter/submillimeter radiometers by adjusting the sensor configuration of the forward model. In the future, 

we plan to extend the algorithm to Doppler CPR carried by the EarthCARE satellite and millimeter/submillimeter-wave 470 

radiometers such as GOSAT-GW/AMSR3 and MetOp-SG/ICI, which are to be launched within the next few or several years. 
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Data availability 475 

The match-up observation dataset from GPM/GMI and CloudSat/CPR are include in (Turk et al., 2021).  
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The NICAM data used in this work will be made available upon request by the authors.  

Tensorflow module in python are used for machine learning (Deep Neural Network).  480 
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